...小于 1 分钟
- Java207
- 编程14
- 设计78
- DevOps8
- 数据结构和算法16
- 数据库106
- 网络19
- 分布式79
- 大数据33
- 软件工程3
- 工作8
- 笔记47
- JavaCore64
- JavaEE15
- 软件20
- 工具37
- 框架68
- 中间件9
- 编程范式4
- 编程语言3
- Python6
- 架构31
- 设计模式27
- 重构7
- DDD2
- UML4
- 综合20
- 监控2
- 线性表4
- 树6
- 数据库综合3
- 数据库中间件4
- 关系型数据库18
- 文档数据库11
- KV数据库19
- 列式数据库14
- 搜索引擎数据库23
- 网络综合8
- 网络协议6
- 网络技术4
- 操作系统13
- 操作系统应用2
- 分布式综合12
- 分布式协同17
- 分布式调度7
- 分布式通信32
- 分布式存储7
- hadoop7
- hive8
- spark1
- flink9
- 其他15
- 人工智能1
- 基础特性18
- 高级特性7
- 容器7
- IO9
- 并发11
- JVM9
- 面试11
- JavaWeb6
- 服务器8
- 构建9
- IDE4
- 监控诊断6
- JavaBean2
- 模板引擎4
- 测试5
- Spring61
- ORM3
- 安全8
- 缓存5
- 流量控制2
- 微服务5
- 解决方案8
- Git3
- Shardingsphere2
- Mysql10
- MongoDB10
- Redis17
- HBase12
- Elasticsearch14
- Elastic8
- Linux11
- 命令1
- 分布式协同综合10
- ZooKeeper6
- RPC9
- MQ17
- hdfs4
- 效能6
- 方法论2
- 规范3
- 分布式理论3
- Tomcat6
- Maven7
- Spring综合5
- Spring核心24
- Spring数据10
- SpringWeb8
- SpringIO4
- Spring集成4
- Spring安全1
- Spring其他4
- RPC综合4
- Dubbo3
- MQ综合2
- Kafka9
- RocketMQ4
- 其他MQ1
数据结构与数据库索引
关键词:链表、数组、散列表、红黑树、B+ 树、LSM 树、跳表
引言
数据库是“按照 数据结构 来组织、存储和管理数据的仓库”。是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
——上面这句定义对数据库的定义来自百度百科。通过这个定义,我们也能明显看出数据结构是实现数据库的基石。
从本质来看,数据库只负责两件事:读数据、写数据;而数据结构研究的是如何合理组织数据,尽可能提升读、写数据的效率,这恰好是数据库的核心问题。因此,数据结构与数据库这两个领域有非常多的交集。其中,数据库索引最能体现二者的紧密关联。
...大约 20 分钟
Nosql 技术选型
一、Nosql 简介
传统的关系型数据库存在以下缺点:
- 大数据场景下 I/O 较高 - 因为数据是按行存储,即使只针对其中某一列进行运算,关系型数据库也会将整行数据从存储设备中读入内存,导致 I/O 较高。
- 存储的是行记录,无法存储数据结构。
- 表结构 schema 扩展不方便 - 如要需要修改表结构,需要执行执行 DDL(data definition language),语句修改,修改期间会导致锁表,部分服务不可用。
- 全文搜索功能较弱 - 关系型数据库下只能够进行子字符串的匹配查询,当表的数据逐渐变大的时候,
LIKE
查询的匹配会非常慢,即使在有索引的情况下。况且关系型数据库也不应该对文本字段进行索引。 - 存储和处理复杂关系型数据功能较弱 - 许多应用程序需要了解和导航高度连接数据之间的关系,才能启用社交应用程序、推荐引擎、欺诈检测、知识图谱、生命科学和 IT/网络等用例。然而传统的关系数据库并不善于处理数据点之间的关系。它们的表格数据模型和严格的模式使它们很难添加新的或不同种类的关联信息。
...大约 20 分钟