HBase 架构
HBase 架构
HBase 是一个在 HDFS 上开发的面向列的分布式数据库。
HBase 存储架构
在 HBase 中,表被分割成多个更小的块然后分散的存储在不同的服务器上,这些小块叫做 Regions,存放 Regions 的地方叫做 RegionServer。Master 进程负责处理不同的 RegionServer 之间的 Region 的分发。
概览
HBase 主要处理两种文件:预写日志(WAL)和实际数据文件 HFile。一个基本的流程是客户端首先联系 ZooKeeper 集群查找行键。上述过程是通过 ZooKeeper 获取欧含有 -ROOT-
的 region 服务器来完成的。通过含有 -ROOT-
的 region 服务器可以查询到含有 .META.
表中对应的 region 服务器名,其中包含请求的行键信息。这两种内容都会被缓存下来,并且只查询一次。最终,通过查询 .META. 服务器来获取客户端查询的行键数据所在 region 的服务器名。
Region
HBase Table 中的所有行按照 Row Key
的字典序排列。HBase Table 根据 Row Key 的范围分片,每个分片叫做 Region
。一个 Region
包含了在 start key 和 end key 之间的所有行。
HBase 支持自动分区:每个表初始只有一个 Region
,随着数据不断增加,Region
会不断增大,当增大到一个阀值的时候,Region
就会分裂为两个新的 Region
。当 Table 中的行不断增多,就会有越来越多的 Region
。
Region
是 HBase 中分布式存储和负载均衡的最小单元。这意味着不同的 Region
可以分布在不同的 Region Server
上。但一个 Region
是不会拆分到多个 Server 上的。
Region Server
Region
只不过是表被拆分,并分布在 Region Server。
Region Server
运行在 HDFS 的 DataNode 上。它具有以下组件:
- WAL(Write Ahead Log,预写日志):用于存储尚未进持久化存储的数据记录,以便在发生故障时进行恢复。如果写 WAL 失败了,那么修改数据的完整操作就是失败的。
- 通常情况,每个 RegionServer 只有一个 WAL 实例。在 2.0 之前,WAL 的实现叫做 HLog
- WAL 位于
/hbase/WALs/
目录下 - 如果每个 RegionServer 只有一个 WAL,由于 HDFS 必须是连续的,导致必须写 WAL 连续的,然后出现性能问题。MultiWAL 可以让 RegionServer 同时写多个 WAL 并行的,通过 HDFS 底层的多管道,最终提升总的吞吐量,但是不会提升单个 Region 的吞吐量。
- BlockCache:读缓存。它将频繁读取的数据存储在内存中,如果存储不足,它将按照
最近最少使用原则
清除多余的数据。 - MemStore:写缓存。它存储尚未写入磁盘的新数据,并会在数据写入磁盘之前对其进行排序。每个 Region 上的每个列族都有一个 MemStore。
- HFile:将行数据按照 Key/Values 的形式存储在文件系统上。HFile 是 HBase 在 HDFS 中存储数据的格式,它包含多层的索引,这样在 HBase 检索数据的时候就不用完全的加载整个文件。HFile 存储的根目录默认为为
/hbase
。索引的大小(keys 的大小,数据量的大小)影响 block 的大小,在大数据集的情况下,block 的大小设置为每个 RegionServer 1GB 也是常见的。- 起初,HFile 中并没有任何 Block,数据还存在于 MemStore 中。
- Flush 发生时,创建 HFile Writer,第一个空的 Data Block 出现,初始化后的 Data Block 中为 Header 部分预留了空间,Header 部分用来存放一个 Data Block 的元数据信息。
- 而后,位于 MemStore 中的 KeyValues 被一个个 append 到位于内存中的第一个 Data Block 中:
Region Server 存取一个子表时,会创建一个 Region 对象,然后对表的每个列族创建一个 Store
实例,每个 Store
会有 0 个或多个 StoreFile
与之对应,每个 StoreFile
则对应一个 HFile
,HFile 就是实际存储在 HDFS 上的文件。
HBase 系统架构
和 HDFS、YARN 一样,HBase 也遵循 master / slave 架构:
- HBase 有一个 master 节点。master 节点负责协调管理 region server 节点。
- master 负责将 region 分配给 region server 节点;
- master 负责恢复 region server 节点的故障。
- HBase 有多个 region server 节点。region server 节点负责零个或多个 region 的管理并响应客户端的读写请求。region server 节点还负责 region 的划分并通知 master 节点有了新的子 region。
- HBase 依赖 ZooKeeper 来实现故障恢复。
Master Server
Master Server 负责协调 Region Server。具体职责如下:
- 为 Region Server 分配 Region ;
- 负责 Region Server 的负载均衡 ;
- 发现失效的 Region Server 并重新分配其上的 Region;
- GFS 上的垃圾文件回收;
- 处理 Schema 的更新请求。
Region Server
- Region Server 负责维护 Master Server 分配给它的 Region,并处理发送到 Region 上的 IO 请求;
- 当 Region 过大,Region Server 负责自动分区,并通知 Master Server 记录更新。
ZooKeeper
HBase 依赖 ZooKeeper 作为分布式协调服务来维护集群中的服务器状态。Zookeeper 维护哪些服务器是活动的和可用的,并提供服务器故障通知。集群至少应该有 3 个节点。
ZooKeeper 的作用:
- 保证任何时候,集群中只有一个 Master;
- 存储所有 Region 的寻址入口;
- 实时监控 Region Server 的状态,将 Region Server 的上线和下线信息实时通知给 Master;
- 存储 HBase 的 Schema,包括有哪些 Table,每个 Table 有哪些 Column Family 等信息。
以上,最重要的一点是 ZooKeeper 如何保证 HBase 集群中只有一个 Master Server 的呢?
- 所有 Master Server 会竞争 Zookeeper 的 znode 锁(一个临时节点),只有一个 Master Server 能够创建成功,此时该 Master 就是主 Master。
- 主 Master 会定期向 Zookeeper 发送心跳。从 Master 则通过 Watcher 机制对主 Master 所在节点进行监听。
- 如果,主 Master 未能及时发送心跳,则其持有的 ZooKeeper 会话会过期,相应的 znode 锁(一个临时节点)会被自动删除。这会触发定义在该节点上的 Watcher 事件,所有从 Master 会得到通知,并再次开始竞争 znode 锁,直到完成主 Master 的选举。
HBase 内部保留名为 hbase:meta 的特殊目录表(catalog table)。它维护着当前集群上所有 region 的列表、状态和位置。hbase:meta 表中的项使用 region 作为键。region 名由所属的表名、region 的起始行、region的创建时间以及基于整体计算得出的 MD5 组成。
HBase 读写流程
写入数据的流程
- Client 向 Region Server 提交写请求;
- Region Server 找到目标 Region;
- Region 检查数据是否与 Schema 一致;
- 如果客户端没有指定版本,则获取当前系统时间作为数据版本;
- 将更新写入 WAL Log;
- 将更新写入 Memstore;
- 判断 Memstore 存储是否已满,如果存储已满则需要 flush 为 Store Hfile 文件。
更为详细写入流程可以参考:HBase - 数据写入流程解析
读取数据的流程
以下是客户端首次读写 HBase 上数据的流程:
- 客户端从 Zookeeper 获取
META
表所在的 Region Server; - 客户端访问
META
表所在的 Region Server,从META
表中查询到访问行键所在的 Region Server,之后客户端将缓存这些信息以及META
表的位置; - 客户端从行键所在的 Region Server 上获取数据。
如果再次读取,客户端将从缓存中获取行键所在的 Region Server。这样客户端就不需要再次查询 META
表,除非 Region 移动导致缓存失效,这样的话,则将会重新查询并更新缓存。
注:META
表是 HBase 中一张特殊的表,它保存了所有 Region 的位置信息,META 表自己的位置信息则存储在 ZooKeeper 上。
更为详细读取数据流程参考: